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Imaging of Biomedical Data Using a Multiplicative
Regularized Contrast Source Inversion Method

Aria Abubakar, Peter M. van den Berg, and Jordi J. Mallortdember, IEEE

Abstract—In this paper, the recently developed multiplicative
regularized contrast source inversion method is applied to mi-
crowave biomedical applications. The inversion method is fully
iterative and avoids solving any forward problem in each iterative
step. In this way, the inverse scattering problem can efficiently be
solved. Moreover, the recently developed multiplicative regular-
izer allows us to apply the method blindly to experimental data.
We demonstrate inversion from experimental data collected by
a 2.33-GHz circular microwave scanner using a two-dimensional
(2-D) TM polarization measurement setup. Further some results
of a feasibility study of the present inversion method to the
2-D TE polarization and the full-vectorial three-dimensional
measurement will be presented as well.

Index Terms—Experimental data, medical applications, mi-
crowave tomography, nonlinear inversion, three-dimensional.

I. INTRODUCTION

M

measured scattered field by the targets and the scattered field
calculated from a numerical model (see [6] and [7]). In this
method, one has to solve the multiview forward problem in
each iterative step. This aspect will limit the applicability of
the method for the full-vectorial three-dimensional (3-D) case.
Another type of algorithm which avoids solving any forward
problem in each iterative step is introduced by van den Berg and
Kleinman [2] for the two-dimensional (2-D) case and extended
by Abubakar and van den Berg [8] to the full-vectorial 3-D static
case. In this method, the complex permittivity contrast and the
contrast sources (the product of the complex permittivity con-
trast with the total field) are iteratively reconstructed by min-
imizing a cost functional using conjugate gradient directions.
Recently, the method has been modified to include a multiplica-
tive regularization factor by van den Beztjal.[9] and extended

by Abubakaet al.[10]. The multiplicative technique allows the

ICROWAVE imaging techniques for biomedical appli-method to use a regularization factor without the necessity of de-
cations are much less developed than those basedtefmining an artificial weighting parameter. This regularization

ultrasound, X-rays, nuclear magnetic imaging, or even elggarameter is determined by the iterative process itself, which
trical impedance tomography. Standard diffraction tomograpihyakes the method suitable to invert experimental data as shown
methods have been shown to offer limited capabilities in terrhy Bloemenkampet al.[11].

of quantitative reconstructions of the complex permittivity [1]. In this paper, the improved version of the method, the
Fortunately, in the last decade, microwave tomography hes-called multiplicative regularized contrast source inversion
made a significant step with the development of various iterttMR-CSI) method, described in [12], has been modified to
tive reconstruction algorithms providing serious expectatiogarry out inversion of microwave biomedical data. Further
in obtaining quantitative images (see [2]-[5]). Particularlfeasibility study results of the applications of the MR-CSI
the ability to handle the high complex permittivity targetgnethod in 2-D TE-polarization and full-vectorial 3-D cases
marked a sharp difference with previous standard diffractigwhich up to now is known as a difficult case to handle [13])

tomography algorithms. The latter algorithms provided onigre presented. This paper is organized as follows. First, the
qualitative results, namely, the equivalent current distributiontegral representations and the inversion algorithm will be
in the target. On the other hand, the quantitative algorithrdescribed. Then, for the 2-D TM-polarization case, inversion
aim to a reconstruction of the complex permittivity of theesults of some experimental data collected at UPC Barcelona
target delivered from the local field dependence involved in thtsing a circular microwave scanner at 2.33 GHz developed
equivalent current distribution. As is well known, the price tby Broquetaset al. [14] will be presented. After that, some
pay is to solve a nonlinear inverse problem, instead of a lineggmparisons of inversion of synthetic data for 2-D TM- and
one which can computationally be (very) expensive. Due to ti#sD TE-polarization measurement will be discussed. Then, as a
expensive computation requirement, the use of a noniteratfigal example, we present the inversion results of a simple 3-D
algorithm will not be feasible. model using full-vectorial measurements.

The most popular quantitative reconstruction algorithm used
for biomedical applications is the Newton—Kantorovich tech- [l. INTEGRAL REPRESENTATIONS

nique which aims to minimize iteratively the error between the | ot an incident electric fieldZ™ illuminate an inhomoge-

neous dielectric objed® of complex permittivitye(x) and ar-

. . bitrary shape. The complex permittivity and the shape of this
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e B. 2-D TE-Polarization Case

For 2-D TE polarization, the electric field has two compo-
nents in the transversal plane of the objects. In our cése,
ELi,+F»io, while ¢ denotes the incident electric field due to
a line source with polarization in the transversal plane located at
x> . The line sources are located in a data donsasurrounding
the object domaid, where the measurements are made as well,
z® € S. Then, for this 2-D TE polarization, the scattered field
can be represented in an integral form

B (gR) = (k + VRVR) /D o(z® — &' )x(@)E(z), do(z’)
®)

whereV* is the spatial differentiation operator with respect to
Fig. 1. Geometrical model for the scattering experiment. z'. In this 2-D TE polarization, only the scattered electric field

tangential to the receiver aperture is measured. We then require
The position vector is denoted lByWe assume a time-harmonicthe integral representation in (6) to be satisfied for this tangential

dependencexp(jwt), wherej? = —1, w is angular frequency, component. This measurement setup is similar to the one used

andt is time. by Bloemenkamget al. [11] for the 2-D TE-polarization case.
The total field inside the object domai is known to satisfy

A. 2-D TM-Polarization Case the domain integral equation

For 2-D TM polarization, the electric field is parallel to ob-
jects. In our casel = Es(x)is. We then deal with a scalarEinC(z):E(z) — (kb2+VV-)/ g(z — ) x(z ) E(z') dv(z’).
problem. The quantity3™°(«) denotes an incident electric field D
due to a line source locatedt with polarization in the di- (1)

rection parallel to the cylindrical objects. The line sources are q h basi . develop th
located in a data domaifi surrounding the object domaif, Equations (6) and (7) are the two basic equations to develop the

where the measurements are made as w&lle S. Then, for inversion procedure for the 2-D TE-polarization case.

this 2-D TM polarization, the scattered field can be represented I il
in an integral form C. 3-D Full-Vectorial Case

In a 3-D full-vectorial problem, the electric incided™
Egct(;gR) = kf/ g(:[;R —z)x(x)Es(x) dv(z’) (1) field is a three-components vector. For simplicity, we consider

D a point magnetic dipole source directed in the vertical direction,
where the 2-D Green’s functiopis given by the iz direction, located a£~. This magnetic dipole source is
. located in a data domaifi surrounding the object domaif,
g(x) = - HSQ)(kb|$|)7 ky = w/Tioes @) where the megsuremenﬁ €Sis made_z as well. Then, for this _
4 3-D full-vectorial case, the scattered field can be represented in

in which HSQ) is the zeroth-order Hankel function of the second" integral form

kind andp, is the permeability in vacuum. In (1), the contrast
 Is given by (@) = (1 + V") [ Gt =) (@) B) dola)
- (8)
€exr €
x(z) = B ®)
b where the 3-D Green’s functiai is given by
where ikl
eXp|— IRy |T
Glg) = — 2270 9
@) =l (@) + k@] = o | @) -5 22| o &= i ©
0

: . : . In this full-vectorial 3-D case, we measure all the components
in which ¢,.(z) ando(x) are the relative permittivity and the b

conductivity, ands is the permittivity of vacuum., The total field of the scattered electric field. The total field inside the object

FE3 inside the object domai® is known to satisfy the domain domainL)is known to satisfy the domain integral equation

integral equation e ) , , , ,

EY(x)=FE(x)—(k; —|—VV-)/ Gz — 2')x (2" E(x') du(z').
D

E(z) = Es(z)—k} /D g(z—2 )x(&) Es(z') dv(a’). (5) (10)

Equations (1) and (5) are the two basic equations to develop thguations (8) and (10) are the two basic equations to develop
inversion procedure for the 2-D TM-polarization case. the inversion procedure for the full-vectorial 3-D case.
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Il. | NVERSE ALGORITHM in which

In order to Q|scus§ our solut|_on of thg inverse scattering FS (w;) IUSZHfz‘ — Gswil| (18)

problem, we first write our basic equations in an operator ;

notation. We denote either the scalar electric field for the 2-D

TM-polarization case, the two-components electric field vector

for the 2-D TE-polarization case, or the three-components

electric field vector for the full-vectorial 3-D case by theThe normalization factors are chosen as

symbolu. The data quantities either the scalar scattered electric -1

field, the two-component scattered electric field vector, or 0 = <Z||fi”§> (20)
T

E2(wi, x) =02 Y Ixu™ —wi + xGpwil|h. (19)

the three-component vector scattered electric field vector are

denoted byf. -1
_We assume that the unkn_ow_n objgct is |Ilgm|nated succes- nP = Z ll5n_ 10|, ) 1)
sively by a number of known incident fieldg™,: =1, ..., I. .

For each incident field*<, the total field will be denoted by; . . ) o
and the measured scattered field data are denotefl. Gyhen, In (16) F;;" is the weighted.(D)-norm total variation regular-
the integral representations of the measurement data in (1), {g§tion factor

and (8) are written as FR(X) 1 V(@) +82_,
fi = Gsxu,, re S (12) " V Jp IVxn_o1(®)]? + 672171

dv(z)  (22)

whereV = [, duv(z) denotes the volume of the object do-
main D. We have included the regularization factgf® as a
multiplicative constraint, with the result that the cost functional
w; = u + Gpyus, xe D. (12) F, isthe weighting parameter, i.e., determined by the inversion
problem itself. This eliminates the choice of the artificial regu-

The profile reconstruction problem is that of findingof the |arization parameters completely. In (223#1 is chosen as
object domairD for given f; atthe data domaifi, or solving the

while the domain integral equations in (5), (7), and (10) a
written as

data equation in (11) fog, subject to the additional condition 82 =Fp 1A% (23)
that x andw; on D satisfy (12). This problem is nonlinear and N ) _ ) )
has to be solved iteratively. whereA denotes the reciprocal mesh size of the discretized do-

We observed that the data equations contain the unknoiinD andf;? , is the normalized error in the object equation
fields inside the scattering object and the contrast in the forhthe previous iteration, cf. (19).

of a product; it can be written as a single quantiiy, the con- The cost functional in (16) is based on two things: the objec-
trast sources tive of minimizing the errors in the data and object equations

and the observation that the regularization factor, when mini-
w;(x) = x(x)u; (z) (13) mized, converges to one. The structure of the cost functional
_ ) _ is such that it will minimize the regularization factéi®* with
which can be considered as equivalent sources that producee{hgrge weighting parameter in the beginning of the optimiza-
measured scattered fields. Using the definition of the contragl, process, because the valuelof is still large, and that it

sources in (13), we obtained the data equations in terms of {h@ gradually minimize more and more the errors in the data
contrast sources as follows: and object equations when the regularization factor has reached
a nearly constant value close to one. If noise is present in the

fi=Gswi,  zES. (14) data, the errors in the data equations will remain at a large value

Multiplying both sides of (12) withy, and using (13), we define during the optimization and, therefore, the weight of the regu-

in symbolic form the object equations as larization factor will be more significant. Hence, the noise will,
_ at all times, be suppressed in the reconstruction process and we
w; = xui* + xGpw;, zeD. (15) automatically fulfill the need of a stronger regularization when

the data contain noise.
We consider (14) and (15) as two equations from which we wantthe factors?_, is introduced for restoring differentiability.
to determine the unknown contrastind the unknown contrast s choice is further inspired by the idea that, in the first few
sourcesw; in D. iterations, we do not need the minimization of the regularization
The MR-CSI method constructs alternatively sequences fttor and when the iterations proceed we want to increase the
contrast sources); ,, for (n = 1, 2, ...) and the contrast,, effect of the regularization factor.
for (n =1, 2, ...) by minimizing a cost functional This MR-CSI algorithm starts with some initial estimates ob-
R tained from the back propagation. Then, in each iteration, it re-
Cn(wiy x) = Fn(wi, X)F5" () (16) constructs alternatingly the contrast sources and the contrast by
where using conjugate gradient steps (one for the contrast sources and
one for the contrast). In this way, the computational complexity
Fo(w;, x) = F5(w;) + EP (w;, x) (17) of the algorithm is approximately equal of solving two forward
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Fig. 3. Measurement setup of the experimental data and the cylindrical
phantom (schematic).

In the inversion of experimental data, we assumed that the
unknowns object entirely located within a test domairwith
dimension of 6.4 by 6.4\. The quantityX is the wavelength in
water withe, = 77.3 — §8.66 at frequencyf = 2.33 GHz.

Fig. 2. Photograph of the 2.33-GHz circular scanner. Hence, the wavelength = 14.6 mm. The discrete form of
the algorithm is obtained by dividing the test domain into 64

problems using conjugate gradient method. The details of t¥% 64 subsquares, assuming the contrast, the contrast sources,
algorithm can be found in the Appendix. and the fields to be piecewise constant. The integrals over sub-

In biomedical applications, we have soraepriori infor- Sduaresare approximated by integrals over circles of equal area
mation about the range of the complex permittivity). We which are calculated analytically [15]. The discrete spatial con-
remark that thisa priori information is easily implemented volutions are efficiently computed using fast Fourier transform

by enforcing, after each update of the contrast, the compl@:xFT) routines. -
permittivity beyond its range to either the lower or the upper The lower and upper bounds of the complex permittivity used

bound. In most numerical examples presented later in thfsthe inversion algorithm are given by
paper, we have used thaspriori information. 0< ¢ (z) < 80and0 < —(z) < 20. (25)

IV. EXPERIMENTAL DATA: 2-D TM CASE

o . A. Cylindrical Phantom
Forthe 2-D TM-polarization case, there are experimental data y

available. The circular microwave scanner with frequency of 1he first experimental data (data file: FANCENT.ASC) were
operation at 2.33 GHz is used. It consists of a 12.5-cm-radi@gtained from a phantom consisting of two Plexiglas cylinders,
circular array of 64 water-immersed horn antennas, see [1@!.ed with different concentrations of ethyl alcohol. Fig. 3
The electric field is parallel to the array axis, theaxis. The Shows the phantom for which the measurements were taken.
targets are introduced in a cylindrical water tank (see Fig. &ylinder A was filled with a 96% solution of ethyl alcohol,
Each of the array antennas can operate either in a transmittig! ¢ = 10 — j8.3. Cylinder B was filled with a 4% ethyl

or receiving mode. The measurement procedure records the t8tPho! solution, with: = 73 — j11. The complex permittivity
electric field values at the receiving antennas, when all the ari@ythe Plexiglas was = 2.73 — j0.01. _

antennas are successively used as a transmitter. Due to isolatiol€ results obtained from the initial estimates (back prop-
limitations of the circuitry, if one antenna is transmitting, th@dation) are given in the top plots in Fig. 4. This is approxi-
scattered fields are measured only with the 33 antennas locdié@fely identical if we use the spectral diffraction tomography
in front of the active source. A schematic measurement setug®hnique. From the back propagation results, we can “already”
the antenna array is given in Fig. 3. The scattered fields are @bsServe the presence of cylinder B, butthe indication of the pres-
duced from the total field by subtracting the incident field, me&nce of cylinder Ais very poor. Nevertheless, the reconstructed
sured in the absence of any targets. Furthermore, the measyfges are completely wrong. _ -
scattered fields have been calibrated so that a unit line sourcd N€ results of our nonlinear inversion method described in the
directed in thei; direction can be used as the model of the incRresent paper after 1024 iterations are given in the bottom plots

dent fieldsviz. of Fig. 4. Although the total number of iterations is large, the
. w total computation time is limited. Note that we do not solve any
Ere(z) = —% H((JQ) (ky|z — :cf|) (24) forward problem in each iteration of the algorithm. One iteration

of the method takes approximately 8 s on a personal computer
wherepg = 47 x 1077 is the permeability in vacuum. with a 600-MHz Pentium 1l processor. After 1024 iterations,
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Fig. 4. Cylindrical phantom: images obtained from back propagation (top
plots) and from nonlinear inversion (bottom plots). Fig. 5. Human arm phantom: images obtained from back propagation (top
plots) and from nonlinear inversion (bottom plots).

the normalized erraF? in the data equations is already reduced
to 4.08%, and adding more iterations does not change the res@lt.Human Forearm
Note that this particular experimental data has also been used
to test the Newton—Kantorovich method by Joachimivetal. As the last experimental data, we consider data that were

[7]. They have obtaingd a comparable numgripal resu!t, bUttjg'ken from a human forearm (data-file: BRAGREG.ASC). The
the Newton-Kantorovich method moeepriori information, back propagation results are given in the top plots of Fig. 6.

like the location of the boundary of cylinder B and its (approxr_he results of our nonlinear inversion method after 1024 iter-

imate) permittivity value, has to be used. Without using this {i\tions are given in the middle plots of Fig. 6. After 1024 itera-

priori information, the Newton—Kantorovich method was no . S .
able to produce acceptable results [7] tions, the normalized erra¥;; in the data equations is already

reduced to 4.10%, and adding more iterations does not change
the result. The reconstructed images show the positions of the
B. Human Arm Phantom two bones and the correct value of the muscle (approximately

The next experimental data (data file: PHANARM.CO) wer§4") — j17.2). Conversely, due to the water and tissue attenua-

obtained from a human arm phantom. The external layer (skm%n and the reduced dynamic range of the available data, the

and bones of the human arm phantom were made with PVC wit mplex permittivity values of the b_ones are higher than the
complex permittivity2.73 — j0.01 and the muscle was4.5 — real ones (the value should approximately h& — j0.59 at
417.2. Again we show first the results obtained from the initia?'33 GHz). . . )

estimates (back propagation). These results are given in the toff? 0rder to investigate whether we can improve the results
plots of Fig. 5. The results of our nonlinear inversion metho@ reducing the cell size, in the bottom plots of Fig. 6 we
after 1024 iterations are given in the bottom plots of Fig. 5. Aftdpresent also inversion results using a discretization mesh that
1024 iterations, the normalized erdf in the data equations is i twice as fine. Thus, now the test domain 5.y 6.4\ is
already reduced to 6.40%, and adding more iterations does figcretized into 128 by 128 cells. The computation time is
change the result. From the results, we observe that the bofiBBroximately increased by a factor of four. We observe that
are clear and sharp. The drawback is that for one of the borilée complex permittivity values of the reconstructed bones
the imaginary part of the reconstructed complex permittivity i&re improved slightly. The normalized errdt; in the data
completely wrong. This can be caused by the presence of #uations is now reduced to 4.06%, which is lower than the
noise in the experimental data (in typical operational conditiopsevious value. Thus, for this particular data set, reducing the
the SNR is around 20 dB). mesh size is not advantageous.
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Fig. 7. Synthetic arm: images of the original profile (top plots) and the results
using 2-D TM polarization (middle plots), and using 2-D TE polarization
(bottom plots).

40 50 60 70 80 0 5 10 15

Fig. 6. Human forearm: images obtained from back propagation (top plotg) the 2D TE-polarization measurement, we use a slightly dif-
from nonlinear inversion using 64 by 64 cells (middle plots) and using 128 t% t techni 171) to obtain the di te f fthe i
128 cells (bottom plots). rent technique (see [17]) to obtain the discrete form o the in-
version algorithm than the one used to generate synthetic data.
In order to have a criterion of the quality of the reconstructed

V. COMPARISON OF2-D TM- AND 2-D . )
images, we define the contrast error as follows:

TE-POLARIZATION MEASUREMENTS

In this section, we present some comparisons of the inver- le(z) — oz ()12
sion using 2-D TM- and 2-D TE-polarization measurements. ERR, = 5 (@)| 2 L (26)
Because there are no experimental data available for the 2-D ) i

TE-polarization case, we use synthetic data. The 2-D TE-polar- : . - . .
P y P rt|1_eree°“g (x) isthe original profile which has been used to gen-

ization measurements can be obtained by rotating the horn % ‘ thetic data. Note that for the stud a th theti
tennas over 90 degrees in the circular measurement antenaé%.e synthetic data. Note that for the study using the synthetic

The synthetic data are generated using a Conjugate Gradell thea priori mformgt!on about the lower gnd upper bound
FFT method; see [15] for 2-D TM-polarization measuremen the complex permittivity contrast, cf. (25) is not used.

and [16] for 2-D TE-polarization measurements. Note that, due )

to the gradient-divergence operator working on the integral ov@r Synthetic Arm

domain D, the discretization procedure of the TE-polarization As a first example, we consider a synthetic model of human
measurements is more complicated than that for the TM-poléorearm. The data are collected using the measurement setup
ization measurements. After generation of synthetic data, 5d frequency of operation as the ones used for the experi-
random additive white noise of the maximum value of all theental data. The original profile of the synthetic human forearm
scattered field are added to the data. In the inversion algoritligrgiven in top plots of Fig. 7. The background medium is water



ABUBAKAR et al: IMAGING OF BIOMEDICAL DATA USING AN MR-CSI METHOD 1767

(77.3 — 78.6). The model consists of bones with complex per- € -€
mittivity 5.5 — 70.59, marrows with8 — ;0.98, and four blood
vessels witls3— j14. The permittivity of the muscle 54— j13.

The sizes of the object domaii¥in Fig. 7 are 4.3 by 4.5\,

In the inversion, this test domaif? is discretized into 45 by
45 cells. The inversion results from the TM-polarization mea-
surement after 1024 iterations are given in the middle plots of
Fig. 7. After 1024 iterations, the normalized erfdf in the data
equations and the contrast ertER R, are reducedto 2.63% and
7.78%, and adding more iterations does not improve or change
the result. One iteration now takes approximately 8 s.

The inversion results from the TE-polarization measurement
after 1024 iterations are given in the bottom plots of Fig. 7.
After 1024 iterations, the normalized ertBf in the data equa-
tions and the contrast err&RR,, are reduced to 1.11% and
6.30%, and adding more iterations does not improve the result.
One iteration now takes approximately 16 s. We observe that the
boundaries of the bones are reconstructed better than the one
obtained from TM-polarization measurements. The reason for
the improved reconstruction is based on the fact that in the inte-
rior of the test domaitD the electric fields are not tangential of
the different tissue, so that the jumps in these components yield
better reconstruction results of these interfaces. In order to in-
vestigate this improvement, we consider a more inhomogeneous
example, namely the synthetic neck.

B. Synthetic Neck

The same measurement setup is still used as the previous|
example (64 sources with 33 receivers in front of a particular
source), but now the radius of the antennas is 11.19 cm and the
frequency of operation is 1 GHz. The complex permittivity of
water at this frequency of operationi8 — 53.6. The original
profile of this simple neck model is given in the top plots of :
Fig. 8. The neck model consists of fat tissue with complex per- 20 T 0 5 0 15 20
mittivity 28 — 513.5, cartilage with25 — j10.78, veins/arteries
with 63 — 520, bone with6.4 — 52.16, trachea 1, and marrow Fig. 8. Synthetic neck: images of the exact profile (top plots) and the results
5.5 — j0.59. The permittivity of the muscle is0 — j23.37. The tjbstlart]t%rﬁ_goth,\)A polarization (middle plots), and using 2-D TE polarization
size of the domaiD in Fig. 8 is3.3X by 3.9\ whereA = is the '
wavelength in water at frequency of operatipr= 1 GHz.

In the inversion, this test domai is discretized into 33 by VI. RESULTS OFFULL-VECTORIAL 3-D INVERSION

37 cells. The inversion results from the TM polarization mea- ag 4 test case for our full-vectorial 3-D inversion algorithm

surement after 1024 iterations are given in the middle plofg yse the 3-D version of the synthetic example in [18]. The
of Fig. 8. After 1024 iterations, the normalized erbf in  measurement setup is similar to the one used by Bulyshev
the data equations and the contrast eiBR,, are reduced t0 5| [13] where they employ a scalar approximation of the field
0.06% and 17.97%, and adding more iterations does not igyyplem. We have three rings containing transmitter and re-
prove the result. Note that, contrary to the results for the sypsiver antennas. A schematic view of the transmitter—receiver
thetic arm, the normalized errors in the data equations are V&Btup and the test domalnis given in Fig. 9. All receivers op-
small, v_vhile the_ error in contrast is still large. This indicates g gte simultaneously (in all three rings) while the transmitter op-
lack of information. _ eerates one after another. The receiver records all the components
Next, we investigate whether we can improve the results usiggtne vector electric fieldz;® (multicomponent receiver). The

the TE-polarization measurements. The inversion results frapnsmitter is modeled using a point magnetic dipole directed in
the TE-polarization measurement after 1024 iterations are giMgR ;,, directionviz.

in the bottom plots of Fig. 8. We observe that the results in-

deed improved. After 1024 iterations, the normalized effgr ) s
in the data equations and the contrast eBBIR,, are reduced Einc(z) = juwyg exp(—jk|z — 7|
t0 0.31% and 16.19%, and adding more iterations does not im- drlz — xf |3
prove the result. Uz — 23 )iy — (x1 — 2f ia]. (27)

(—jky|lz — 27| — 1)
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Fig. 9. Schematic of the antenna positions and the test domain
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Fig. 11. Contour plots of the original profile (top plots) and the reconstructed
results (bottom plots) at; = 0.

in the bottom plots of Fig. 10. Now, one iteration takes approx-
imately 22 s on a personal computer with a 600-MHz Pentium
Il processor. We observe that the results are quite satisfactory
in spite of the use of limited data. The only drawback is that the
resolutions in the vertical direction are worse than those in the
transversal plane. This is due to the limited number of transmit-
o = » ters and receivers in the vertical direction. In order to have more
details on the reconstruction results, we present also the contour

Fig. 10. Volume slices of the original profile (top plots) and the reconstructgalots in Fig. 11 atcs = 0 (the plane in the middle ring).
results (bottom plots).
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The frequency of operation of the transmitterg is 1 GHz. In VII. CONCLUSION

eachring, we have 6 transmitter stations and 30 receiver stationsThe present results of experimental biomedical data using
thus in total we have 18 90 data points. The vertical positionsa 2-D TM-polarization measurement at 2.33 GHz show that
of the circular rings arer; = —\, 0, and—\, whereA = the MR-CSI method leads to an effective inversion technique.
0.0333 m, is the wavelength in water with complex permittivityThe algorithm is fully iterative and does not solve any forward
77.3—j21.2. Note that making the number of transmitters equalroblem in each of its iterative steps. This makes the method
to the number of receivers could be extremely expensive fronsaitable for large scale computations. Furthermore, the artificial
computational point of view. tuning process with a weighting parameter of the regularization
The original profile which has been used to generate synthetiicobtain the “cosmetically best” results seems superfluous.
data are given in the top plots of Fig. 10. These plots show theFrom the feasibility study results of the synthetic arm and
volume slices at:; = 0 andxs = 0. The dimension (domain the synthetic neck of the 2-D TM- and 2-D TE-polarization
D) of the profiles in Fig. 10 is 3 by 3\ by 3\. The objects measurements, we observe that the algorithm is not able to
have a complex permittivity close to that of biological tissuesconstruct tissues with a dimension less than half the wave-
(bone= 8.0 — j3.2 and muscle= 49.6 — 740.4), and they are length. This limitation is known as the Rayleigh criterion.
immersed in water. The synthetic data are generated by a c®hus, in order to image inhomogeneities with sizes less than
jugate gradient FFT method using discretization cells 0&30 half a wavelength, one has to use a higher frequency (shorter
30 x 30. The technique to obtain the discrete form of the alvavelength) wave field experiment. The problem with using
gorithm is described in [19]. After generation of synthetic dat@a, single high-frequency experiment is the increase of the
5% random additive white noise is added. nonlinearity of the problem, which will effect the performance
In the inversion, we discretize the test domélrinto 15 by of the algorithm. Thus, in order to robustly solve this problem,
15 by 15 cells, thus the number of complex unknowns is equaldo multifrequency experiment inversion has to be included
3375. The reconstruction results after 1024 iterations are givee, e.g., [20]) and because the Maxwell model (due to the
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relaxation effect of the complex permittivity) no longer holdsB. Updating of the Contrast

a more complicated model, e.g., the Debye model, has to bggefgre updating the contrast, we first compute
used. Moreover, under the hardware point of view, some issues

concerning the SNR, repeatability, and isolation requirements Wiy = U + Gpw; p = Ui pe1 + 4V . (35)
of the scanner must be investigated. This is one subject of our
future research. Now, supposing thab; ,, andy,_; are known, we update

As our final test study, we show a simple example of inversidyy
of full-vectorial 3-D biomedical media. The results indicate that
the inversion method can obtain satisfactory 3-D results using a Xn = Xn—1 + aydy (36)

limited data set. . N
wherex: is a constant parameter and the update directjpis

taken as the Polak—Ribiére conjugate gradient direction

APPENDIX
The MR-CSI method starts with the updating of the contrast do =0
sources and contrast in the following manner. Re{gX, g¥ — g~

(In—1: Gn—1)D
A. Updating the Contrast Sources Asin 121 th ditioned aradient in (37) is aiven b
Define the data error and the object error to be sin[12], the preconditioned gradiegt in (37) is given by

v _ e+ Fn (W) n, Xn1) 0

Pi,n = fi,n - GSwi,n (28) In Z |U’j n|2 (38)
Ti,n :Xnu;nC — Wi n T XnGDwi,n- (29) J
where
Now supposev; ,,—1 andx.,—1 are known. We update; by
) gr? = _777? Z(Xn—lui,n - wi,n)ai,n (39)
Wi = Wi n1+ 050 pn (30) J
where«? is a real constant parameter and the update directigad
v;_p, are functions of position. The update directions are chosen 1 v
’ e . . . . R Xn—1
to be the Polak—Ribiere conjugate gradient directions. These up- gy () = % V. [WX e (40)
n— n—1

date directions are given by
Note that the gradient} tends to the directiop” as the gra-

vi,0 =0 dient g tends to zero. The weighting of the gradients clearly
Re ) (gi ns 93 = 9k ne1)D depends on the normalized errors in the cost funckipnSince

Viin =G5 + K — — vin—1 (31) We have a multiplicative cost function, one can expect a higher

’ Z@k,n—l’ i n-1)D nonlinear functional, but the gradient of this cost function has
the same form as the gradient of an additive cost function with

where a weighting parameter related 19,; see, e.g., [9]. Moreover,

we observe that the gradient of the present regularization

9% = —0°Gpin-1 — 2 [ri,n—1 — GH(Xp_17i,n—1)] . factor is similar to the one of total-variation regularization;

(32) see [_9]. Hence, this weightgd?(D_) regularization f_ac_tor .
combines the features of minimization of the total variation in
In (32), G% andG?, are the adjoints offs and Gp mapping theLQ(D)—norm gnd in theLl(D)'—nprm' (through its g_radient).
L%(S)into L2(D) andL2(D) into L2(D), respectively. Further, The minimization of th_e multiplicative cost _functl_onal (16)
the overbar denotes complex conjugate. The real paramﬁtercan be performe_d a_\nalytlcally_. The cost functional is a fourth-
in (30) is found explicitly to be degree polynomial i = o viz.

ur

_ReZQJ%}m Vi,n)D C =
?
af = .
T Y U IGsvinllE 08 2 lvin — Xn—1Goviallp
' ’ 2 DRE(dw Ui p — Wi p)
(33) + 2am,; Re : nWi ny Xn—1%i n i,n)D

T

FS(wi ) + FP (Wi, 0y Xn—1) + 202> ldnus, o3,

We choose as starting values the contrast sources that mini-x [1+2aRe<bn_1VXn_1, bn_1Vd.)p +a2||bn—1Vdn||2D:|
mize the normalized errors in the data equatibiis which are (41)
the contrast sources obtained by back propagation

i 2 where
Gsfs
bp _ NSJillD oo 34
wz,o ||GSGgfz||§ sz ( ) bnfl _ V_1/2(|vXn71|2 +6T2171)_1/2' (42)
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Differentiation with respect tev yields a cubic equation with [15] J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross
section shape,'EEE Trans. Antennas Propagatvol. AP-13, pp.

one real root and two complex conjugate roots. The real root is
334-341, 1965.

the desired m'n'm'zle@%- . . [16] A.P.M.Zwamborn and P. M. van den Berg, “A weak form of the conju-
As far as the starting valug, is concerned, we start with the gate gradient FFT method for two-dimensional TE scattering problems,”

initial estimateswfpo of (34) and compute the initial field; o IEEE Trar_1_s. Microwave Theory Techol. 39,_ pp. 9_53—96'0, J_une 1991.

. 2 ’ [17] B. J. Kooij and P. M. van den Berg, “Nonlinear inversion in TE scat-

using (35) to obtain tering,” IEEE Trans. Microwave Theory Teghol. 46, pp. 1704-1712,
Nov. 1998.

[18] N. Joachimowicz, C. Pichot, and J. P. Hugonin, “Inverse scattering: An
iterative numerical method for electromagnetic imagingEE Trans.
Antennas Propagatvol. 12, pp. 1742-1752, Dec. 1991.

[19] A. Abubakar and P. M. van den Berg, “A total variation enhanced con-
trast source inversion method for three-dimensional profile reconstruc-
tion,” in Proc. ECCOMAS 2000, Book of AbstradBarcelona, Spain,
Sept. 11-14, 2000, CD-ROM, p. 19, p. 1132.

[20] W. C. Chew and J. H. Lin, “A frequency-hopping approach for mi-
crowave imaging of large inhomogeneous bodidEEE Microwave
Guided Wave Lettvol. 5, pp. 439-441, Dec. 1995.

bp —
22 wioi, o
wi o = uP + Gpw®. (43)

X0 — —E |U,Z‘70|2 ) 5
This completes the description of the MR-CSI algorithm.
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